

The Mass of the Nucleon

Martin J Savage

A Nice and Stimulating Workshop

Much of what I present results from discussions from this meeting

Stanley J. Brodsky Leonard Gamberg Xiangdong Ji Sylvester Joosten Dmitri Kharzeev Keh-Fei Liu Andreas Metz Zein-Eddine Meziani Alfred Mueller Berndt Mueller Jim Napolitano Jianwei Qiu David Richards Craig Roberts Martin Savage Nikos Sparveris Stepan Stepanyan George Sterman Bernd Surrow Yi-Bo Yang

Masses of Strongly Interacting Particles

Nucleon

Nucleon is an entangled state of indefinite particle number with spin-1/2

quark masses defined in a scheme at a scale:

e.g. Dim. Reg. with MSbar at μ =2 GeV

Origins in the Standard Model

 $G_{\mu\nu}G^{\mu\nu}$, $\overline{q}\,\gamma_{\mu}\,D^{\mu}\,q$ Gluons and quark kinetic

g^{ij} \overline{q}_i V q_j quark masses

F_{μν}F ^{μν} Ε+Μ

Yang-Mills and Dirac

Yukawa and Higgs

Two ``Nobel-Prize" Contributions

The Higgs Mechanism - UV Physics

Massless matter fields of the Standard Model endowed with mass through spontaneous symmetry breaking at the electroweak scale

Two ``Nobel-Prize" Contributions

Strong Quantum Fluctuations - IR Physics

Two ``Nobel-Prize" Contributions

Strong Quantum Fluctuations - IR Physics

Asymptotic Freedom, Confinement, Chiral Symmetry Breaking

 $i\hbar \frac{\partial \psi}{\partial t} = (i\hbar c \gamma_0 \gamma \cdot \nabla + \gamma_0 m_0 c^2) \psi$

- A meaningful decomposition ?
- What do we currently know?
- How to probe and constrain further ?
- Are there fine-tunings?

$$\mathcal{L} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \overline{q} \left(\cancel{D} + m_q \right) q + \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$

$$QCD \qquad QED$$

Quarks and Gluons

`Equals`

$$\mathcal{L} = \overline{N} \left(D + M_N \right) N + \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$
 EFT

Nucleon EFT

Chiral Symmetry Results - quark masses

Chiral Perturbation Theory

Véronique Bernard¹ and Ulf-G. Meißner²

$$\frac{m_u}{m_d} = 0.553 \pm 0.043, \quad \frac{m_s}{m_d} = 18.9 \pm 0.8,$$

$$\frac{m_s}{\hat{m}}=24.4\pm1.5.$$

Leutwyler (1996)

¹Laboratoire de Physique Théorique, Université Louis Pasteur, F-67084 Strasbourg, France; email: bernard@lpt6.u-strasbg.fr

²Helmholtz Institut für Strahlen und Kernphysik, Universität Bonn, D-53115 Bonn, Germany; and Forschungszentrum Jülich, Institut für Kernphysik, D-52425 Jülich, Germany; email: meissner@itkp.uni-bonn.de

Lattice QCD: Results - quark masses

$$\overline{\mathrm{MS}}$$
, $\mu = 2~\mathrm{GeV}$

Lattice QCD: Hadron Masses

Lattice QCD: The Bleeding Edge

Lattice QCD: Results - Nucleon Mass

 $M_N = 800~{
m MeV}~+~m_\pi~$ Unexpected behavior!!

$$\Delta M_{u,d} = M_H(m_{\pi}) - M_H(0)$$

generalizes to any number of the quarks (NOT the same as turning off the vev)

The difficulty determining the value for vanishing quark mass

- pion is special the u,d masses are 100% of its mass
- Nucleon LQCD and HBχPT

$$\Delta_m M_N^{n_f=2+1} = M_N(m_u, m_d, m_s)^{n_f=2+1} - M_N^{n_f=2+1}(0, 0, m_s) = 59(4)(7)(3) \text{ MeV}$$
(Alverez-Ruso et al, 2013,2014)

 Accounts for both the explicit dependence in the Hamiltonian and implicit dependence in the states

- Hadron masses for massless (or near massless) u,d,s, or u,d,s,c, or ... remain to be calculated
 - interesting: higgs vev is lowered to zero
 - scale setting is the issue (in LQCD)
 - fix UV parameters at physical point, then change masses

Light Nuclei: Quark Mass Effects

Hadron Mass The Scale Current

$$s_{\mu} = x^{\nu} T_{\mu\nu}$$

Scale invariance explicitly by masses and quantum fluctuations (through dimensional transmutation)

Hadron Mass Divergence of the Scale Current

Lorentz Invariant (neglect QED for now)

$$s_{\mu} = x^{\nu} T_{\mu\nu}$$

$$\partial^{\mu}s_{\mu}=T^{lpha}_{lpha}=\ -M_{N}\overline{N}N$$
 Low-Energy EFT

$$\partial^{\mu} s_{\mu} = \frac{\beta(\alpha)}{\alpha} \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + (\gamma_m(\alpha) - 1) m_q \overline{q} q$$
 QCD

Nucleon Mass comes **entirely** from the *divergence of the scale current*, which is the *trace of the energy-momentum tensor*.

$$M_{N} = {}_{m_{q}}\langle |\overline{q}m_{q}q| \rangle_{m_{q}} - {}_{m_{q}}\langle |\frac{\beta(\alpha)}{\alpha} \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \gamma_{m}(\alpha) m_{q} \overline{q}q| \rangle_{m_{q}}$$

$$= M_{\text{ExM}} + M_{\text{ExA}} = \sigma + M_{\text{ExA}}$$

Derivative at the physical point

LQCD (χQCD collaboration results)

$$\sigma_{ud}^{n_f=2+1} = 44.4(3.2)(4.5) \text{MeV}, \ \sigma_s^{n_f=2+1} = 32.3(4.7)(4.8) \text{MeV}$$

$$\sigma_{uds}^{n_f=2+1} = 76.7(6.4)(6.6) \text{MeV}$$

Lattice QCD: (ChiQCD) Results - Nucleon σ-Term

Recent results of chiral fermion calculations

Lattice QCD: (BMW) Results - Nucleon σ-Term

$$M_{N} = {}_{m_{q}}\langle |\overline{q}m_{q}q| \rangle_{m_{q}} - {}_{m_{q}}\langle |\frac{\beta(\alpha)}{\alpha} \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \gamma_{m}(\alpha) m_{q} \overline{q}q| \rangle_{m_{q}}$$

$$= M_{\text{ExM}} + M_{\text{ExA}} = \sigma + M_{\text{ExA}}$$

The Pion is special : chiral symmetry Gell-Mann-Oakes-Renner $m_\pi = \sqrt{\mu(m_u + m_d)}$

$$\frac{\partial m_{\pi}}{\partial m_{u}} = \frac{1}{2} \sqrt{\frac{\mu}{m_{u} + m_{d}}}$$

$$\sum_{i} m_{q} \frac{\partial m_{\pi}}{\partial m_{q}} = \frac{1}{2} \mu \sqrt{m_{u} + m_{d}} = \frac{1}{2} m_{\pi}$$

GMOR

_QCD

8.1 ± 0.7 ± 0.7 %

91.8 ± 0.7 ± 0.7 %

Hadron Mass Decomposition #2

Explicit Anomalous Contribution

Nuclear σ-Terms and Dark Matter Interactions

Nuclear σ-terms

(Beane et al, Phys.Rev. D89 (2014) 074505)

$$\sigma_{Z,N} = \overline{m} \langle Z, N(gs) | \overline{u}u + \overline{d}d | Z, N(gs) \rangle = \overline{m} \frac{d}{d\overline{m}} E_{Z,N}^{(gs)}$$

$$= \left[1 + \mathcal{O}\left(m_{\pi}^{2}\right) \right] \frac{m_{\pi}}{2} \frac{d}{dm_{\pi}} E_{Z,N}^{(gs)}$$

σ-term from binding only

Nuclear σ-Terms and Dark Matter Interactions

Nucleon Mass

Binding 3 He (m_{π} =450 MeV)

Dictates a Class of Dark Matter Interactions

- Explicit U and D Quark–Mass Contributions: σ_{ud}–Term
- Explicit Anomalous Contribution

The Rest Frame

$$H_m = \sum_q \overline{q} m_q q = H_{\mathrm{ExM}}$$

$$H_{\text{kin}} = -\frac{1}{2} \left(|\mathbf{E}|^2 - |\mathbf{B}|^2 \right) + \sum_{q} \overline{q} \boldsymbol{\gamma} \cdot \mathbf{D} q = H_{\text{ExYM+Qkin}}$$

$$H_a = -\frac{1}{4} \left[\gamma_m \sum_q m_q \overline{q} q + \frac{\beta}{4\alpha} \left(|\mathbf{E}|^2 + |\mathbf{B}|^2 \right) \right] = \frac{1}{4} H_{\text{ExA}}$$

$$M_N = -m_q \langle |T^{00}| \rangle_{m_q} = m_q \langle |H_m| \rangle_{m_q} + m_q \langle |H_{kin}| \rangle_{m_q} + m_q \langle |H_a| \rangle_{m_q}$$

$$m_q \langle H_{\mathrm{ExYM+Qkin}}| \rangle_{m_q} = \frac{3}{4} m_q \langle H_{\mathrm{ExA}}| \rangle_{m_q} = 3 m_q \langle H_a| \rangle_{m_q}$$
 Xiangdong Ji, PRL74, 1071 (1995)

$$m_{\pi} \sim \left(\frac{1}{2}m_{\pi}\right)_{\rm ExM} + \left(\frac{3}{8}m_{\pi}\right)_{\rm ExYM+Qkin} + \left(\frac{1}{8}m_{\pi}\right)_{\rm ExA}$$

The Pion

- Explicit U and D Quark–Mass Contributions: σ_{ud} –Term
- Explicit Yang-Mills and Quark Kinetic Contributions
- Explicit Anomalous Contribution

Nucleon Mass

- Explicit U and D Quark–Mass Contributions: σ_{ud}–Term
- Explicit Yang-Mills and Quark Kinetic Contributions
- Explicit Anomalous Contribution

Experiment Quarkonia Interactions

Only spin-0 and spin-2 , no spin-1 (requires 3 gluons)

 $G_{\mu\nu}~G^{\mu\nu}$, $G_{0\alpha}~G_0{}^\alpha$

 $G_{i\alpha} G_{j}^{\alpha}$ symmetrized, traceless

O(1) (Luke, Manohar, MJS)

 $O(1/M_Q)$

Charmonium-Nuclei $m_{\pi} \sim 800 \text{ MeV}$

Athenna

Experiment Other Probes?

- Can other experimentally accessible probes be identifies?
- Momentum transfer?
- Probes related to T_µ^V are interesting

Hadron Mass Chiral Limit from LQCD?

Mass of the nucleon when vev=0?

- 1) Tune the UV parameters to experiment at the physical quark masses
- 2) Reduce the quark masses with fixed UV parameters
- 3) Can do u,d,s,c,b but not t

Hadron Mass Chiral Limit from LQCD?

Interesting question - but challenging ...

Resum zero modes in path integral L m_{π} << 2 π

Becomes unclean!

Want lattice volumes such that L $m_{\pi} > 2 \pi$

Interesting calculations to do

Nuclei Chiral Limit from LQCD?

Interesting question - but challenging ...

Nuclear force - no long range, only $\delta(r)$ and r^{-3} from π .

Short-range couplings modified

Radiation π 's need to be included

Currently do not know if nuclei exist near the chiral limit.

Summary

- Within the Standard Model, we "know" the mechanisms of mass generation, but have limited "understanding" of the QCD mechanism
- Quantitative decompositions for u,d quarks, and partially for s quarks
- What is the optimal experimental program to pursue?
 - Needs more thought/effort
- Challenge to determine nucleon mass when vev=0
 - How much does the Higgs mechanism contribute?

#